An O(nlog(n)) Algorithm for Projecting Onto the Ordered Weighted ℓ1 Norm Ball
نویسنده
چکیده
The ordered weighted `1 (OWL) norm is a newly developed generalization of the Octogonal Shrinkage and Clustering Algorithm for Regression (OSCAR) norm. This norm has desirable statistical properties and can be used to perform simultaneous clustering and regression. In this paper, we show how to compute the projection of an n-dimensional vector onto the OWL norm ball in O(n log(n)) operations. In addition, we illustrate the performance of our algorithm on a synthetic regression test.
منابع مشابه
An $O(n\log(n))$ Algorithm for Projecting Onto the Ordered Weighted $\ell_1$ Norm Ball
The ordered weighted `1 (OWL) norm is a newly developed generalization of the Octogonal Shrinkage and Clustering Algorithm for Regression (OSCAR) norm. This norm has desirable statistical properties and can be used to perform simultaneous clustering and regression. In this paper, we show how to compute the projection of an n-dimensional vector onto the OWL norm ball in O(n log(n)) operations. I...
متن کاملAn O(n log n) projection operator for weighted ℓ1-norm regularization with sum constraint
We provide a simple and efficient algorithm for the projection operator for weighted l1-norm regularization subject to a sum constraint, together with an elementary proof. The implementation of the proposed algorithm can be downloaded from the author’s homepage. 1 The problem In this report, we consider the following optimization problem: min x 1 2 ‖x − y‖ 2 + n
متن کاملFast Projections onto ℓ1, q -Norm Balls for Grouped Feature Selection
Joint sparsity is widely acknowledged as a powerful structural cue for performing feature selection in setups where variables are expected to demonstrate “grouped” behavior. Such grouped behavior is commonly modeled by Group-Lasso or Multitask Lasso-type problems, where feature selection is effected via `1,q-mixed-norms. Several particular formulations for modeling groupwise sparsity have recei...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.00870 شماره
صفحات -
تاریخ انتشار 2015